

Space Grade-E Parallel Persistent SRAM Memory

(AS301GB32, AS302GB32, AS304GB32, AS308GB32)

Features

- Interface
 - Parallel Asynchronous x32
- Technology
 - pMTJ STT-MRAM
 - Virtually unlimited Endurance and Data Retention (see Table 17)
- Density
 - 1Gb, 2Gb, 4Gb, 8Gb
- Memory Array Organization
 - 1 Gb: 33,554,432 x 32
 - 2 Gb: 67,108,864 x 32
 - 4 Gb : 134,217,728 x 32
 - 8 Gb : 268,435,456 x 32
- Radiation Exposure Limits *:
 - ≤ 100K RAD TID,
 - LET ≤ 75 MeV cm2/mg

- Voltage Range
 - Operating Vcc: 2.50V 3.60V
 - Vccio: 1.8V, 2.5V, 3.3V
 - Under Radiation: V_{CC}: 2.50V 3.00V *
 - V_{CCIO}: 1.8V, 2.5V, 3.3V *
- Temperature Range
 - Operating -40°C to 125°C
 - Operating under radiation -40°C to 85°C *
- Packages
 - 142-ball FBGA (15mm x 17mm)
- Qualification
 - JESD47H.01
 - 168 Hr Burn in at 125°C
- RoHS & REACH Compliant **

Revision: Z.2

^{*} To assure a Safe Operating Area, limit the device to these specifications.

^{**} Leaded Balls available

Table of Contents

Features	1
General Description	4
Ordering Options	5
Valid Combinations — Standard	6
Marking Specification — Standard	6
Signal Description and Assignment	7
Special Configuration Options	10
ECC Registers	10
INT# functionality	10
Output Drive Strength Register	10
Device Protection Register	11
Package Options	12
142-Ball FBGA – 1,2,4Gb	12
142-Ball FBGA – 8Gb	13
142-Ball FBGA Mechanical Drawing	14
Normal Device Initialization:	17
Electrical Specifications	19
Write Operation	23
Bus Turnaround Operation – Read to Write	25
Read Operation	26
Asynchronous Page Mode	27
Asynchronous Page Mode Read Operation	28
Asynchronous Page Mode Write Operation	29
Asynchronous Page Mode AC Timing	30
Endurance and Data Retention	31
Thermal Resistance	32
Product Use Limitations	33
Limited Warranty	
Revision History	

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

Figure 1: Part Number Ordering Options	5
Figure 2: Device Marking	6
Figure 3: Device Pinout	7
Figure 4: 142-ball FBGA	
Figure 5: 142-ball FBGA Mechanical Drawing - 1,2,4 Gb	14
Figure 6: 142-ball FBGA Mechanical Drawing - 8 Gb	15
Figure 7: Functional Block Diagram	16
Figure 8: Power-Up Behavior	
Figure 9: Power-Down Behavior	18
Figure 10: Write Operation	
Figure 11: Write Operation (E# Controlled)	
Figure 12: Bus Turnaround Operation	
Figure 13: Read Operation	
Figure 14: 4-Word Asynchronous Page Mode Comparison with Legacy Asynchronous Mode	
Figure 15: Page Mode Functional Block Diagram	28
Figure 16: Asynchronous Page Read Operation	28
Figure 17: Asynchronous Page Write Operation	29
Figure 18: Page Write to Single Write Timing Diagram	29
Table 1: Technology Comparison	
Table 2: Valid Combinations List	
Table 3: Signal Description	
Table 4: Power Up/Down & Device Initialization Timing and Voltages	
Table 5: Recommended Operating Conditions	
Table 6: Pin Capacitance	
Table 7: DC Characteristics	
Table 8: Magnetic Immunity Characteristics	
Table 9: AC Test Conditions	
Table 10: Absolute Maximum Ratings	
Table 11: Write Operation (W# Controlled)	
Table 12: Write Operation (E# Controlled)	
Table 13: Write Operation	
Table 14: Read Operation	
Table 15: Page Mode AC Timing	
Table 16: Endurance and Data Retention	
Table 17: Thermal Resistance Specifications 142 Ball BGA	32

General Description

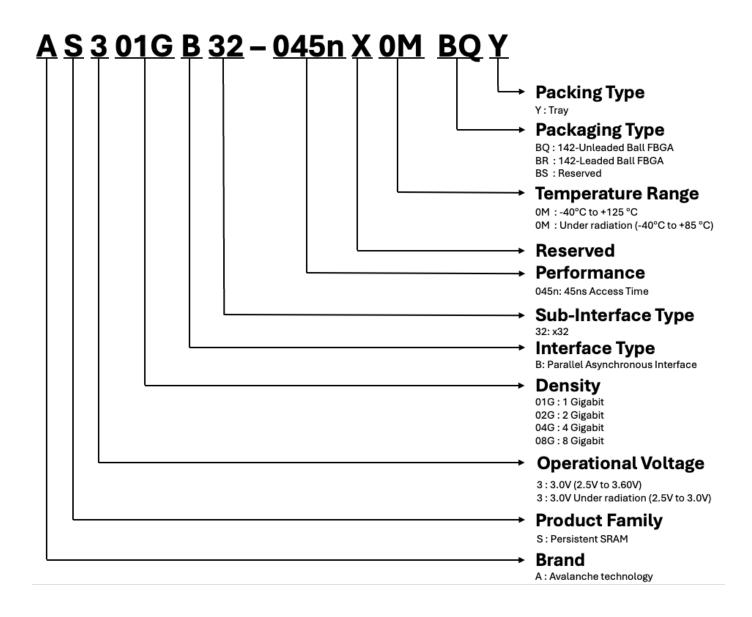
AS3xxx332 is a Spin-transfer torque Magneto-resistive random-access memory (STT-MRAM). It is offered in 1Gbit and 4Gbit. MRAM technology is analogous to Flash technology with SRAM compatible 45ns/45ns read/write timings (Persistent SRAM, P-SRAM). Data is always non-volatile. This makes MRAM a very reliable and fast non-volatile memory solution. Data is always non-volatile with 10¹⁶ write cycles endurance and greater than 20-year retention @85°C.

Table 1: Technology Comparison

	SRAM	Flash	EEPROM	MRAM
Non-Volatility	_	√	√	√
Write Performance	√	_	_	√
Read Performance	√	_	_	√
Endurance	√	_	_	√
Power	_	_	_	√

MRAM is a true random-access memory; allowing both reads and writes to occur randomly in memory. MRAM is ideal for applications that must store and retrieve data without incurring large latency penalties. It offers low latency, low power, high endurance, high performance and scalable memory technology.

AS3xxx332 is available in small footprint (15mm x 17mm) 142 ball BGA package. In 1,2,4Gb densities the device uses one chip select E#. In this configuration one contigious address space of 1,2,4Gb is formed. In 8Gb configuration the package has two banks of 4 dies each selctable separately and not at the same time. Each bank is selectable using either E1# and E2#. In the 8Gb configuration E1# and E2# MUST NOT be selected simultaneously as the two banks share the same I/O pins.


AS3xxx332 is offered with industrial extended (-40°C to 125°C) operating temperature ranges: This is measured as the junction temperature.

Ordering Options

The ordering part numbers are formed by a valid combination of the following options:

Figure 1: Part Number Ordering Options

Valid Combinations — Standard

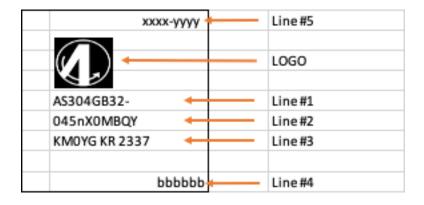
Valid Combinations list includes device configurations currently available. Contact your local sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Table 2: Valid Combinations List

Valid Combinations – 45ns								
Base Part Number	Temperature Range	Package Type	Packing Type	Part Number				
AS301GB32-045nX	OM	BQ	Υ	AS301GB32-045nX0MBQY				
AS302GB32-045nX	OM	BQ	Υ	AS302GB32-045nX0MBQY				
AS304GB32-045nX	OM	BQ	Υ	AS304GB32-045nX0MBQY				
AS308GB32-045nX	OM	BQ	Υ	AS308GB32-045nX0MBQY				
AS301GB32-045nX	OM	BR	Υ	AS301GB32-045nX0MBRY				
AS302GB32-045nX	OM	BR	Υ	AS302GB32-045nX0MBRY				
AS304GB32-045nX	OM	BR	Υ	AS304GB32-045nX0MBRY				
AS308GB32-045nX	OM	BR	Υ	AS308GB32-045nX0MBRY				

Marking Specification — Standard

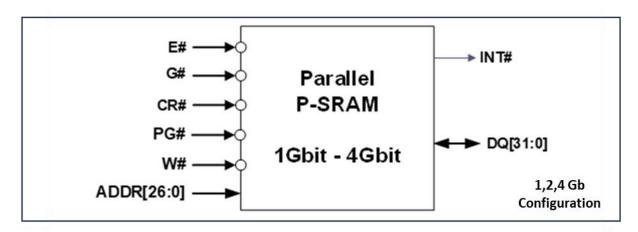
The device will be marked according to the following specification:

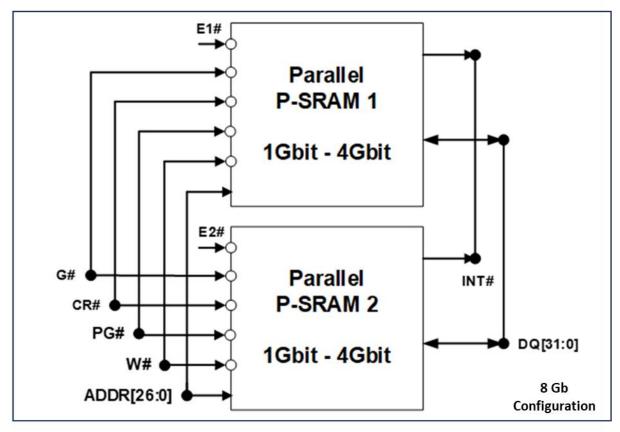

Line #1 & Line #2 will match the part number in Table 2

Line #3 Will show: 5 digit Alphanumeric Code + Country of Origin + Date Code

Line #4 May or May not be marked. This field is reserved for Avalanche Technology

Line #5 May or May not be marked. This field is reserved for Avalanche Technology


Figure 2: Device Marking



Signal Description and Assignment

Figure 3: Device Pinout

Table 3: Signal Description

Signal	Ball Assignment	Туре	Description
E# / E1#	P8	Input	1,2,4Gb (E#): Chip enable: Enables the MRAM array 8Gb (E1#): Chip enable: Enables the 1st bank of 4 MRAM die. There is an internal 10k Pullup. THIS SIGNAL MUST NOT BE ACTIVE AT THE SAME TIME AS E2#.
DNU / E2#	K5	DNU/Input	1,2,4Gb (DNU): It can be left floating and not connected. 8Gb (E2#): Chip enable: Enables the second bank of 4 MRAM die. THIS SIGNAL MUST NOT BE ACTIVE AT THE SAME TIME AS E1#.
G#	P7	Input	Output enable: Enables the output drivers for data transfer I/Os.
CR#	J2	Input	Configuration Register enable: Enables access to the Configuration registers
PG#	K3	Input	Page Mode: Enables Page mode access
W#	M8	Input	Write enable: Transfers data from the host system to the MRAM when Low (Logic '0'). Transfers data from the MRAM to the host system when High (Logic '1').
ADDR[26:0]	M2, L4, K13, M3, L3, M7, P12, L12, N11, N6, P6, L13, M13, P10, N10, M12, N13, L11, M11, P5, P3, N5, N4, M4, N2, N9, M9	Input	Address: I/Os for address transfer 1G: ADDR[24:0] – 25 Address pins for 1Gb x32 devices.* 2G: ADDR[25:0] – 26 Address pins for 2Gb x32 devices.** 4G: ADDR[26:0] – 27 Address pins for 4Gb x32 devices.
DQ[31:0]	E2, F2, D2, E3, E12, D10, C9, C7, G4, G3, F13, D13, C10, E8, F6, E5, E13, G11, E10, F9, C8, C6, D6, D4, G12, C12, D11, D9, E7, C5, D5, C3	Input / Output	Data inputs/outputs: The bidirectional I/Os transfer data [31:0].
INT# ***	G13	Output	Interrupt: Output generated by the MRAM when an unrecoverable ECC error is detected during read operation (output goes low on error): requires to have an external pull-up resistor (4.7KΩ)
Vccio	F12, J12, E11, M10, D8, N8, D7, N7, M5, E4, F3, J3	Supply	I/O power supply.
V _{SSIO}	F10, L10, E9, L9, F8, L8, F7, L7, E6, L6, G5,	Supply	I/O ground supply.
Vcc	C13, P13, D12, N12, C11, F11, H11, J11, K11, P11, C4, F4, H4,	Supply	Core power supply.

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

Signal	Ball Assignment	Туре	Description
	J4, K4, P4, D3, N3, C2, P2		
Vss	A14, B14, C14, H13, R14, T14, A13, T13, A12, G10, H10, J10, K10, F5, L5, A2, T2, A1, B1, R1, T1	Supply	Core ground supply.
DNU	J13, H12, K12, P9, M6, H5, J5, H3, G2, H2, K2, L2		Do Not Use: DNUs must be left unconnected.

^{*} Unused ADDR[26:25] balls should be connected to Ground

^{**} Unused ADDR[26] balls should be connected to Ground

^{***} INT# is latched and must be reset/cleared by writing to the ECC Control register.

Special Configuration Options

There are eight user accessible registers that control ECC, output drive strength and array write protection. All registers are 32-bit wide. These registers are only available during device configuration and not accessible to the user. In a multi-die configuration (2Gb, 4Gb) each 1Gb die has its own set of registers and need to be programmed individually. Each die needs to be selected using the upper 2 MSB address bits.

ECC Registers

There are 6 registers that allow access to the ECC engine during the life of the product to access the functionality of the circuits. During normal use, the ECC engine will correct any soft errors.

INT# functionality

As explained in the pinout, the INT# will go active if uncorrectable error is encountered. This is an open collector output which requires a pullup. In a multi-chip configuration (2G, 4G) the pin is shared between the dies. The recommended next steps are up to the system architect. The host must interrogate each die to identify which one/ones caused the interrupt to clear the INT Flag register.

ECC Control Register – Read and Write

Bits	Name	Description	Read / Write	Default State	Select Options
[31:2]	RSVD	Reserved	R	31'b0	Reserved for future use
[1]	Interrupt Reset	Resets the interrupt generated in response to detection of an unrecoverable error and clears the interrupt flag.	W		0: Don't reset 1: Reset ECC unrecoverable error interrupt
[0]	Error_Count_Reset	Resets the ECC Error Count Register	W	0	0: Don't reset 1: Reset ECC Error Count Register to zero

Output Drive Strength Register

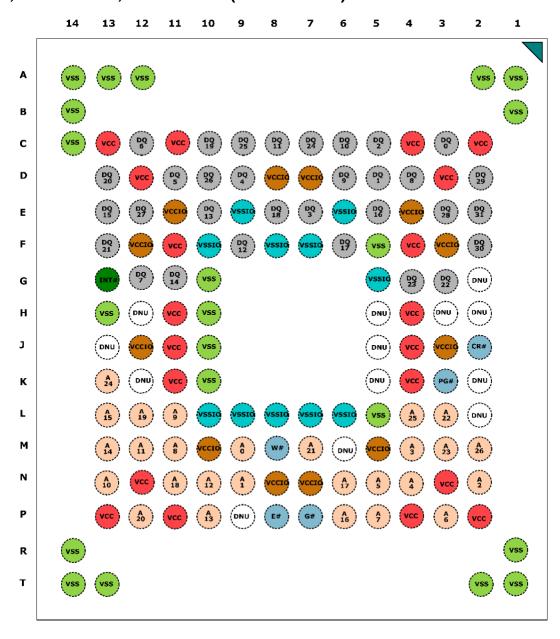
The default setting of this register is 00.

Output Drive Strength Register – Read and Write

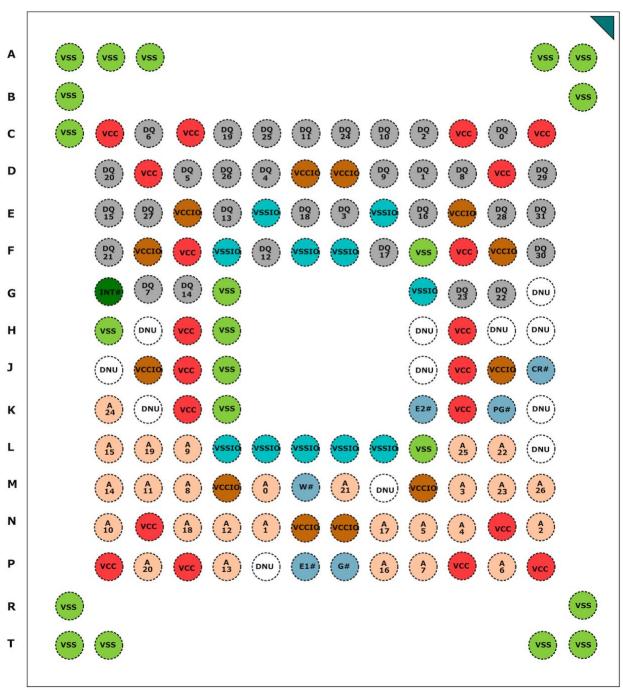
Bits	Name	Description	Read / Write	Default State	Selec	Select Options		
[31:3]	RSVD	Reserved	R	0	Rese	rved for	future us	se
[2]	Enable_ Drive_Strength	Enables or disables the drive strength setting	R/W	0	1: Us	Default setting Use output drive strength setting		
						1.8V	2.5V	3.3V
[1:0]	Output_Drive_	Output drive	R/W	00	00	1mA	2.5mA	4mA
	Strength_Setting	strength			01	3mA	5mA	8mA
					10	5mA	10mA	14mA
					11	7mA	14mA	18mA

Device Protection Register

It is possible to write protect the Memory array as shown in the table below. Note; The term full array is defined as an array of 1Gb.


Device Protection Register – Read and Write

Bits	Name	Description	Read / Write	Default State	Select Options			
[31:3]	RSVD	Reserved	R	29'b0	Reserved for future use			
[2:0]	BPSEL[2:0]	Enables or disables block protection	R/W	3'b0	000 – Disabled 001 – Protect upper 1/64 array 010 – Protect upper 1/32 array 011 – Protect upper 1/16 array 100 – Protect upper 1/8 array 101 – Protect upper 1/4 array 110 – Protect upper 1/2 array 111 – Protect full array			


Package Options

142-Ball FBGA – 1,2,4Gb AS301GB32, AS302GB32, AS304GB32 (Bottom View)

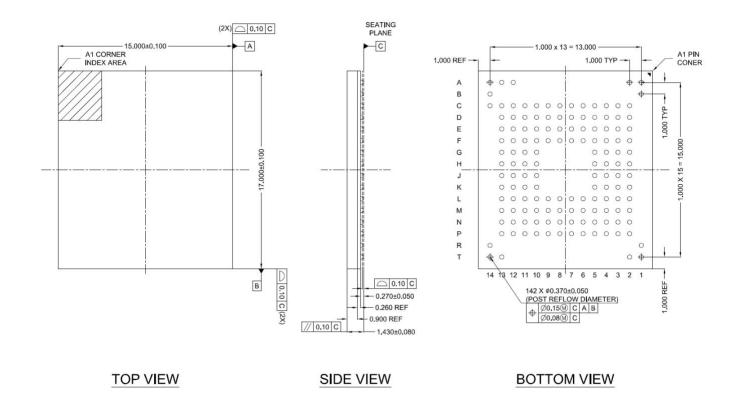
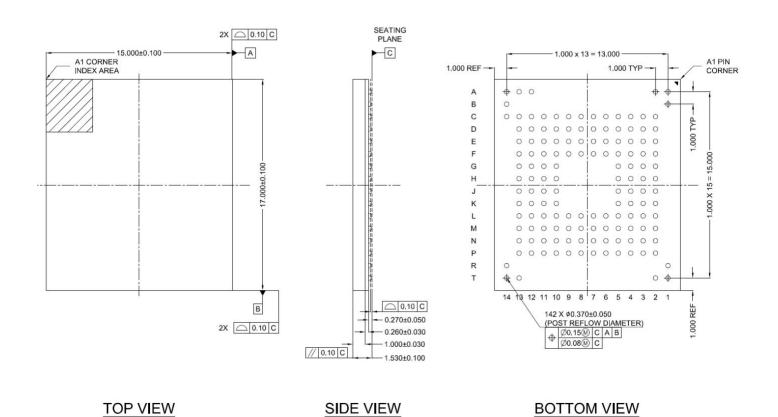

142-Ball FBGA – 8Gb AS308GB32 (Bottom View)

Figure 4: 142-ball FBGA

142-Ball FBGA Mechanical Drawing


Figure 5: 142-ball FBGA Mechanical Drawing - 1,2,4 Gb

[NOTES]

- 1. SOLDER BALL SIZE IS
 - 0.35 mm before reflow
 - 0.37 (+/-0.05) mm post reflow
- 2. SOLDER RESIST OPENING IS
 - 0.300 mm

Figure 6: 142-ball FBGA Mechanical Drawing - 8 Gb

[NOTES]

- 1. SOLDER BALL SIZE IS
 - 0.35 mm before reflow
 - 0.37 (+/-0.05) mm post reflow
- 2. SOLDER RESIST OPENING IS
 - 0.300 mm

Architecture

AS3xxx332 is a high performance MRAM device. Writing to and reading from the device are performed as follows:

To write to the device, drive Chip Enable (E#) and Write Enable (W#) inputs Low (Logic '0'). This enables data on I/O pins (DQ[0] to DQ[31]) to be written into the memory location specified by the address pins (ADDR[0] through ADDR[26]).

To read from the device, drive Chip Enable (E#) input Low (Logic '0'), Output Enable (G#) input Low (Logic '0') while maintaining Write Enable (W#) High (Logic '1'). This enables data from the memory location specified by the address pins (ADDR[0] through ADDR[26]) to appear on I/O pins (DQ[0] to DQ[31]).

In the case of the 8Gb device: This architecture is duplicated. Each bank of 4 dies is controlled with a separate chipselect: E1#, E2#.

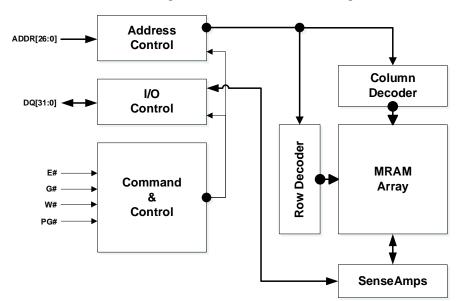


Figure 7: Functional Block Diagram

Table 4: Modes of Operation

Mode	E#	G#	W#	Current	DQ[31:0]
Not Selected	Н	Х	X	I _{SB}	Hi-Z
Output Disabled	L	Н	Н	IREAD	Hi-Z
Read Word	L	L	Н	I _{READ}	Data-out
Write Word	L	X	L	I _{WRITE}	Data-in

Notes:

H: High (Logic '1') X: Don't Care Hi-Z: High Impedance L: Low (Logic '0')

Normal Device Initialization:

When powering up, the following procedure is required to initialize the device correctly:

- V_{CC} and V_{CCIO} can ramp up together (R_{VR}), if not possible then V_{CC} first followed by V_{CCIO}. The maximum difference between the two voltages should not exceed 0.7V before reaching the final value of Vccio.
- The device must not be selected at power-up (a $10K\Omega$ pull-up Resistor to V_{CCIO} on E# is recommended). Then a further delay of tpu (Figure 8) until Vcc reaches Vcc(minimum).
- During Power-up, recovering from power loss or brownout, a delay of tpu is required before normal operation commences (Figure 6).

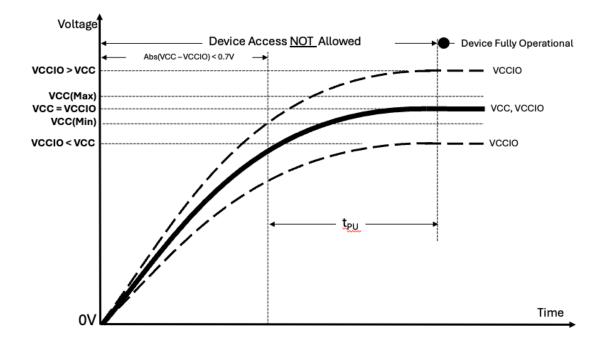


Figure 8: Power-Up Behavior

When powering down, the following procedure is required to turn off the device correctly:

- V_{CC} and V_{CClO} can ramp down together (R_{VF}), if not possible then V_{CC} first followed by VCClO. The maximum difference between the two voltages should not exceed 0.7V.
- The device must not be selected at power-down (a 10KΩ pull-up Resistor to V_{CCIO} on E# is recommended).
- It is recommended that no instructions are sent to the device when Vcc is below Vcc (minimum).
- During power loss or brownout, when V_{CC} goes below V_{CC-CUTOFF}. The voltage must drop below V_{CC}(Reset) for a period of tpp. The power-up timing needs to be observed after V_{CC} goes above Vcc(minimum)

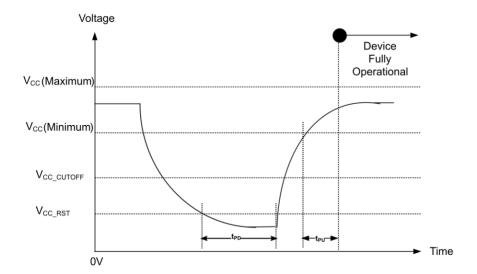


Figure 9: Power-Down Behavior

Table 4: Power Up/Down & Device Initialization Timing and Voltages

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
Vcc Range			2.45	-	3.6	V
V _{CC} Ramp Up Time	RvR	All operating voltages and temperatures	30	-	-	μs/V
V _{CC} Ramp Down Time	RvF		20	-	-	μs/V
V _{CC} Power Up to First Instruction	t _{PU}		1	-	-	ms
Vcc (low) time	t _{PD}		1			ms
Vcc Cutoff - Must Initialize Device	Vcc_cutoff		1.6	-	-	V
V _{CC} (Reset)	V _{CC_RST}		0		0.3	V

Electrical Specifications

Table 5: Recommended Operating Conditions

	Parameter / Condition	Minimum	Typical	Maximum	Units		
	Operating Temperature (T _A)	-40.0	-	125.0	°C		
Normal Operation	Vcc Supply Voltage	2.45	3.0	3.6	V		
V _{CCIO} Supply Voltage			1.8 – 2.5 – 3.3				
	Operating Temperature (T _A)	-40.0	-	85.0	°C		
Under Radiation	V _{CC} Supply Voltage	2.45	2.5 – 3.0	3.05	V		
Radiation	V _{CCIO} Supply Voltage		1.8 – 2.5 – 3.3		V		
	V _{SS} Supply Voltage	0.0 0.0 0.0		V			
V _{SSIO} Supply Voltage		0.0	0.0	0.0	V		
V	wi Write Inhibit Voltage	2.0	2.2	2.4	V		

Table 6: Pin Capacitance

Parameter	Symbol	Test Conditions	Density	Maximum	Units
	Cin		1Gb	10.0	
Input Pin Capacitance		C _{IN} TEMP = 25°C; f = 1 MHz;	TEMP = 25°C; f = 1 MHz; $V_{IN} = 0V$	2/4Gb	20.0
		VIIV — OV	8Gb	40.0	
			1Gb	10.0	pF
Input / Output Pin Capacitance	CINOLIT	TEMP = 25°C; f = 1 MHz; V _{IN} = 0V	2/4Gb	20.0	
			8Gb	40.0	

Table 7: DC Characteristics

Parameter	Symbol	Test Conditions Density		Test Conditions Density	3.0V Device (2.5V-3.6V)				
Parameter	rarameter Symbol rest cor	rest Conditions	Density	Min	Typical ¹	85°C²	Max ³	Units	
	Iread	V _{CC} (max),	1Gb		25	50	80		
Read Current			2Gb		50	100	150		
Read Current		IREAD	I _{OUT} =0mA	4Gb		70	200	300	mA
			8Gb		140	400	600		
Write Current	I _{WRITE}	V _{CC} (max)	1Gb		20	50	80	1	

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

Parameter	Cumbal	Toot Conditions	Donoit	3.0	OV Device (2	.5V-3.6V)					
Parameter	Symbol	Test Conditions	Density	Min	Typical ¹	85°C2	Max ³	Units				
			2Gb		50	100	150					
			4Gb		65	200	300					
			8Gb		130	400	600					
			1Gb		25	50	75					
Standby Current			2Gb		45	100	140					
(-40°C to 125°C)	IsB	V _{CC} (max)	4Gb		60	180	280					
			8Gb		120	360	560					
Input Leakage Current	ILI	V _{IN} =0 to V _{CC} (max)		-	-		±1.0	μA				
Output Leakage Current	I _{LO}	V _{OUT} =0 to V _{CC} (max)		-	-		±1.0	μA				
Input High Voltage (Vccio=1.71-2.2)				0.65* V _{CCIO}	-		Vccio					
Input High Voltage (Vccio=2.2-2.7)	ViH	ViH	ViH	ViH	ViH			1.8			+0.2	V
Input High Voltage (V _{CCIO} =2.7-3.6)				2.2								
Input Low Voltage (Vccio=1.71-2.2)					-		0.35* V _{CCIO}					
Input Low Voltage (Vccio=2.2-2.7)	VIL			-0.2			0.7	V				
Input Low Voltage (V _{CCIO} =2.7-3.6)							0.8					
Output Low Voltage (Vccio=1.71-2.2)		I _{OL} = 0.1mA					0.2					
Output Low Voltage (Vccio=2.2-2.7)	Vol	I _{OL} = 0.1mA		-			0.4	V				
Output Low Voltage (V _{CCIO} =2.7-3.6)		I _{OL} = 2.0mA					0.4					
Output High Voltage (Vccio=1.71-2.2)		I _{OH} = -0.1mA		1.4								
Output High Voltage (Vccio=2.2-2.7)	Vон	I _{OH} = -0.1mA		2.0			_	V				
Output High Voltage (V _{CCIO} =2.7-3.6)	1	I _{OH} = -1.0mA		2.4								

Notes:

Table 8: Magnetic Immunity Characteristics

Parameter	Symbol	Maximum	Units
Magnetic Field During Write	H _{max_write}	24000	A/m
Magnetic Field During Read	H _{max_read}	24000	A/m

¹ Typical values are measured at 25°C

 $^{^{2}}$ 85°C values are guaranteed by characterization; not tested in production

³ Max values are measured at 125°C

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

Table 9: AC Test Conditions

Parameter	Value
Input pulse levels	0.0V to Vcc
Input rise and fall times	5ns
Input and output measurement timing levels	Vcc/2
Output Load	CL = 30pF

Absolute Maximum Ratings

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only. Exposure to maximum rating for extended periods may adversely affect reliability.

Table 10: Absolute Maximum Ratings

Parameter	Minimum	Maximum	Units
Magnetic Field During Write		24000	A/m
Magnetic Field During Read		24000	A/m
Junction temperature		150	°C
Storage Temperature	-55 to 150		°C
Supply Voltage Vcc	-0.5	4.0	V
I/O Voltage Vccio	-0.5	3.8	V
Voltage on any pin except V _{CC}	-0.5	Vccio + 0.2	V
ESD HBM (Human Body Model) ANSI/ESDA/JEDEC JS-001-2017	≥ 200	00 V	V
ESD CDM (Charged Device Model) ANSI/ESDA/JEDEC JS-002-2018	≥ 500 V		V
Latch-Up (I-test) JESD78	≥ 100) mA	mA
Latch-Up (Vsupply over-voltage test) JESD78	Pas	sed	

Write Operation

Figure 10: Write Operation

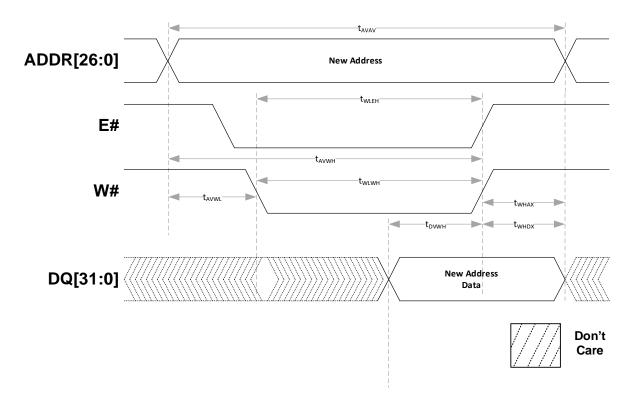


Table 11: Write Operation (W# Controlled)

Parameter	Symbol	Minimum	Maximum	Units
Write Cycle Time	tavav	45	-	ns
Address Set-Up Time	tavwl	0	-	ns
Address Valid to end of Write (G# High)	tavwh	28	-	ns
Address Valid to end of Write (G# Low)	tavwh	30	-	ns
Write Pulse Width (G# High)	twlwh, twleh	25	-	ns
Write Pulse Width (G# Low)	twlwh, twleh	25	-	ns
Data Valid to end of Write	tovwh	15	-	ns
Data Hold Time	twhox	0	-	ns
Write recovery Time	twhax	12	-	ns

Notes:

G# is High (Logic '1') for Write operation

Power supplies must be stable

Addresses valid either before or at the same time as E# goes low

ADDR[26:0] **New Address** telwh W# t_{AVEH} t_{ELEH} E# DQ[31:0] New Address Data

Figure 11: Write Operation (E# Controlled)

Table 12: Write Operation (E# Controlled)

Parameter	Symbol	Minimum	Maximum	Units
Write Cycle Time	tavav	45	-	ns
Address Set-Up Time	tavel	0	-	ns
Address Valid to end of Write (G# High)	taveh	28	-	ns
Address Valid to end of Write (G# Low)	taveh	30	-	ns
Write Pulse Width (G# High)	telwh, teleh	25	-	ns
Write Pulse Width (G# Low)	telwh, teleh	25	-	ns
Data Valid to end of Write	toveh	15	-	ns
Data Hold Time	tehdx	0	-	ns
Write recovery Time	tehax	12	-	ns

Notes:

G# is High (Logic '1') for Write operation

Power supplies must be stable

Addresses valid either before or at the same time as W# goes low

In case of the 8G device: E# is represented by E1# or E2#

Don't Care

Bus Turnaround Operation – Read to Write

ADDR[26:0] **New Address** E# W# **DQ[31:0]** - Datain New Address Data **DQ[31:0] -** Dataout -Don't

Figure 12: Bus Turnaround Operation

Table 13: Write Operation

Parameter	Symbol	Minimum	Maximum	Units
W# Low to Data Hi-Z	twlqz	0	15	ns
W# High to Output Active	twhqx	3	-	ns

Notes:

Power supplies must be stable Addresses valid either before or at the same time as E# goes low In case of the 8G device: E# is represented by E1# or E2#

Care

Read Operation

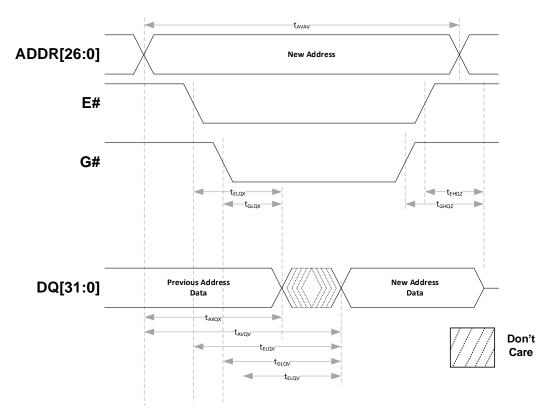


Figure 13: Read Operation

Table 14: Read Operation

Parameter	Symbol	Minimum	Maximum	Units
Read Cycle Time	t _{AVAV}	45	-	ns
Address Cycle Time	t _{AVQV}	-	45	ns
Chip Enable Access Time	t _{ELQV}	-	45	ns
Output Enable Access Time	t _{GLQV}	-	25	ns
Output Hold From Address Change	t _{AXQX}	3	-	ns
Chip Enable Low to Output Active	t _{ELQX}	3	-	ns
Output Enable Low to Output Active	t _{GLQX}	0	-	ns
Chip Enable High to Output Hi-Z	t _{EHQZ}	0	15	ns
Output Enable High to Output Hi-Z	t GHQZ	0	15	ns

Notes:

W# is High (Logic '1') for Read operation

Power supplies must be stable

Addresses valid either before or at the same time as E# goes low

In case of the 8G device: E# is represented by E1# or E2#

Asynchronous Page Mode

Asynchronous page mode is an extension of the legacy asynchronous read and write operations that improves the performance of the MRAM memory, as shown in Figure 11. On power up or reset, the MRAM memory defaults to legacy asynchronous mode to enable controllers to immediately access the memory. Page mode is also immediately available after asserting PG# low and E# high. No special commands or setup are necessary.

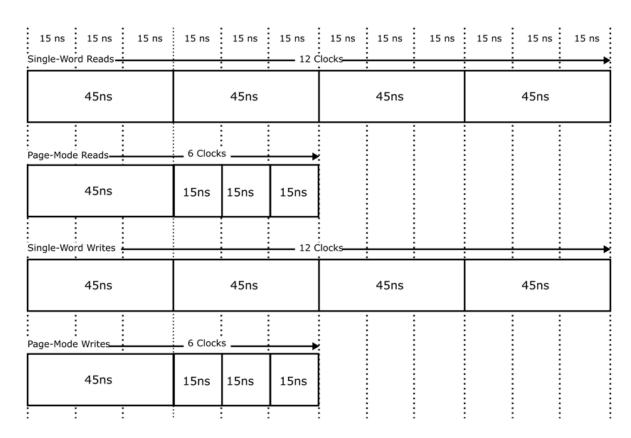


Figure 14: 4-Word Asynchronous Page Mode Comparison with Legacy Asynchronous Mode

Figure 12 shows the page mode functional block diagram. During a page write, a new page is accessed by changing any of the upper addresses A[max:2]. A subsequent write commands (W# toggle) can load the data buffers with new data to be written to any of the adjacent addresses A[1:0]. During page read, an initial asynchronous read access if executed during which 4 data words are read from the memory array simultaneously, and loaded into an internal page buffer, while the first data word is output onto the memory bus. Subsequent reads are output from the data buffer, providing up to two times the read and write access speed of conventional asynchronous reads.

Upper Address Inputs ADDR[Max:2] MRAM Array Data Buffers Data DQ[31:0] Lower Address 4-Word Page Buffer Decode Inputs ADDR[1:0] **Output Buffers Output Enable** Data DQ[31:0]

Figure 15: Page Mode Functional Block Diagram

Asynchronous Page Mode Read Operation

Asynchronous page mode reads are initiated by the memory controller in the same way as asynchronous single-word reads by asserting E# or changing any of the upper addresses A[max:2]. In Figure 13; an address is placed on the address bus, and E# and G# are asserted. Multiple data words are "sensed" simultaneously, and loaded into an internal page buffer while the first data word is being output onto the data bus. After the initial-access delay (tAA), read data is driven onto the data bus and then sampled by the memory controller. When the next read address is within the page-buffer range A[1:0], subsequent data is output from the page buffer, not from the MRAM array. A shorter access delay (tAAP) occurs when data is read from the page buffer. The low-order address bits are used to access the page buffer, and determine which word is output. Four-word page access uses A[1:0];

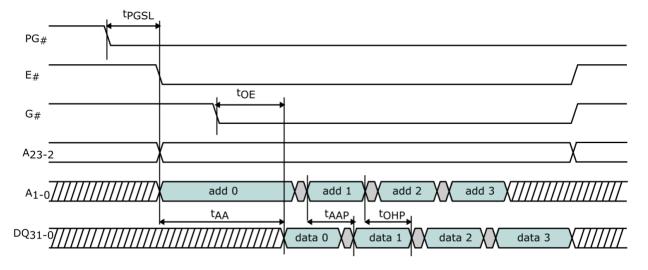


Figure 16: Asynchronous Page Read Operation

In case of the 8G device: E# is represented by E1# or E2#

Asynchronous Page Mode Write Operation

For Asynchronous page mode write, shown in Figure 14, the first write pulse defines the first write access (tpwc). While E# is maintained LOW, a subsequent write pulse along with a new adjacent address A[1:0] executes a page mode write access. E# must be LOW upon completion of a page write access. Asserting E# HIGH at the beginning or the middle of a page access will abort it.

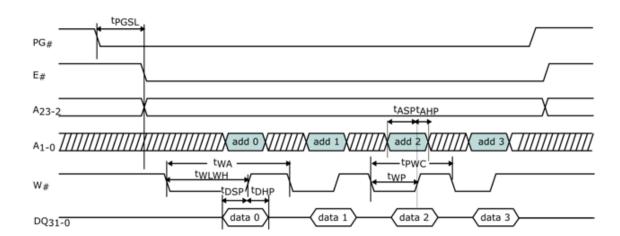
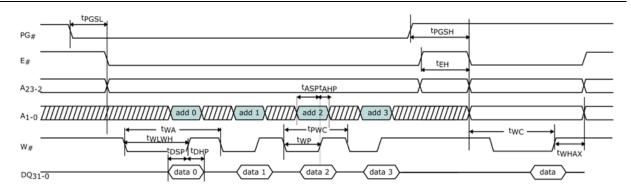


Figure 17: Asynchronous Page Write Operation


Notes:

In case of the 8G device: E# is represented by E1# or E2#

Asynchronous Page Mode Write to Single Write

On power up or reset, the MRAM memory defaults to the legacy asynchronous mode. The page mode is immediately available after asserting PG# low while maintaining E# HIGH for t_{PGSL}. Returning to legacy mode can be achieved by asserting PG# HIGH and E# for t_{PGSH}.

Figure 18: Page Write to Single Write Timing Diagram

Notes:

In case of the 8G device: E# is represented by E1# or E2#

Asynchronous Page Mode AC Timing

Table 15: Page Mode AC Timing

Parameters	Description	Min	Max	Unit
t_{WA}	Write access time	45	-	ns
t _{wc}	Chip enable LOW to write enable HIGH	30	-	ns
t _{WHAX}	Write recovery time	15	-	ns
t _{WLWH}	Write enable low time	25	-	ns
t _{AS}	Address setup time (to E# Low)	0	-	ns
t _E	Chip enable access time	-	45	ns
t _{AA}	Address access time	-	45	ns
to	Output enable access time	-	15	ns
t _{PWC}	Page mode write access	15		ns
t_{WP}	Page mode write enable low time	7.5		ns
t _{WPH}	Page mode write enable high time	7.5		ns
t _{AHP}	Page mode address hold time (to W# High)	6		ns
t _{ASP}	Page mode address setup time (to W# High)	7.5		ns
t _{AAP} – 1,2,4Gb	Page mode address access time	-	15	ns
t _{AAP} – 8Gb	Page mode address access time	-	20	ns
t _{OHP}	Page mode output hold time	5	-	ns
t _{PGSL}	Page mode select to E# Low	10	-	ns
t _{PGSH}	Page mode unselect to E# Low	10	-	ns
t _{PGH}	Page mode high time	45	-	ns
t _{EH}	E# High time	10	-	ns
t _{OH}	Output hold time	5	-	ns
t _{EP}	Page mode E# low time	45	-	ns
t _{DSP}	Page mode data setup time (to W# High)	7.5	-	ns
t _{DHP}	Page mode data hold time (to W# High)	6	-	ns

Endurance and Data Retention

Table 16: Endurance and Data Retention

Parameter	Symbol	Test Conditions	Minimum	Units
Write Endurance	END	-	10 ¹⁶	cycles
		125°C	10	
		105°C	10	
Data Retention	RET	85°C	1,000	years
		75°C	10,000	
		65°C	1,000,000	

Thermal Resistance

Table 17: Thermal Resistance Specifications 142 Ball BGA

Parameter	Description	Test Condition	1Gb	2Gb	4Gb	8Gb	Units
θја	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA/JESD51	17.89	TBD	17.90	TBD	°C/W
θις	Thermal resistance (junction to case)		2.10	TBD	2.19	TBD	SC/ VV

Notes:

 $^{1\!\!:}$ These parameters are guaranteed by characterization; not tested in production.

^{2:} Ambient temperature, T_A 25 °C

^{3:} Worst case Junction temp specified for Top die (θ_{JA}) and Bottom die (θ_{JC})

Product Use Limitations

Avalanche reserves the right to make changes to the information in this document, and related hardware, software and system (collectively referred to as "**Products**") without notice. This document supersedes and replaces any and all prior or contemporaneous information or arrangement of any kind relating to the subject matter hereof. This document and any information set forth herein may not be reproduced without the prior written permission from Avalanche.

<u>Critical Applications</u>. Products are not authorized for use in applications in which failure of the Avalanche component could result, directly or indirectly in death, personal injury, or severe property or environmental damage ("Critical Applications"). Avalanche assumes no liability for Products if used for Critical Applications. Should customer or distributor purchase, use, or sell any Avalanche component for Critical Applications, customer and distributor shall indemnify and hold harmless Avalanche and its subsidiaries, subcontractors, and affiliates and the directors, officers, and employees of each against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of such Critical Application, whether or not Avalanche or its subsidiaries, subcontractors, or affiliates were negligent in the design, manufacture, or warning of the Products.

<u>Automotive Applications</u>. Products are not authorized for use in automotive applications unless specified by Avalanche. Avalanche assumes no liability for Products if used for automotive applications. Distributor and customer shall assume the sole risk and liability for such use and shall indemnify and hold Avalanche harmless against all claims, costs, damages, and expenses and reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, death, or property damage resulting directly or indirectly from any use of Products in automotive applications.

<u>Customer Responsibility</u>. Customers are solely responsible for the design and operation of their systems using Products. It is customer's sole responsibility to determine whether Products are suited for their system. Customers are required to incorporate good safety design measures and adequate safeguards to eliminate risks of personal injury, death, or severe property or environmental damages that could result from failure of Products. **AVALANCHE ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS AND DAMAGES OR LOSSES OCCURING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS.**

The information contained herein is presented only as guidance for Product use. Avalanche assumes no responsibility for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Products. No license to any intellectual property right is granted by this document, whether expressed or implied. You may not perform compositional, structural, functional or other analysis of Products, or undertake deconvolution or reverse engineering with respect to Products.

Limited Warranty

Revision: Z.2

In no event shall Avalanche and its representatives be liable for any indirect, incidental, punitive, special or consequential damages (including but not limited to loss of use, revenue or profit), whether or not such damages are based on tort, warranty, breach of contract or other legal theory.

In no event shall Avalanche's aggregate liability for any breach, warranty, indemnity or other obligation or liability arising out of or in connection with the sale of Products or the use of any Products exceed the purchase price of the particular Product(s) or services with respect to which losses or damages are claimed.

Revision History

Revision	Date	Change Summary	
REV A	11/19/2019	Preliminary release	
REV B	12/19/19	Removed commercial grade	
		Added x32 configuration	
		Removed 54-pin TSOP	
		Added 92-ball FBGA	
		Updated DC characteristics and pin capacitance	
		Updated part number options	
REV C	02/19/2020	Added 125 degrees option	
		Updated 92-ball package	
REV D	10/8/2020	Removed 256Mb density and added 2Gb density	
		Removed Industrial, Industrial Extended temp grade options, added	
		military temp grade option	
		Removed 35ns performance option	
		Updated 92-FBGA dimensions	
		Added radiation specs	
		Updated OPN decoder and valid combinations	
		Updated Electrical Specifications, write operation specifications and read	
		operation specifications.	
		Added Endurance and Retention specs	
REV E	10/23/2020	Removed radiation specs	
REV F	3/15/2021	Added 4Gb device option	
		Changed 92-ball BGA to 142-ball BGA; updated package ball assignments	
		and outline drawing	
		Added Asynchronous Page Mode	
		Removed Industrial and Industrial Plus temp grades	
		Removed sleep mode	
REV G	5/27/2021	Updated BGA Pin assignments	
REV H	6/15/2021	Corrected INT# pin assignment and updated package drawings	
REV I	6/15/2021	Remove restrictions of use in Military applications	
		Changed temp spec to -40. Plastic parts will only be qualified to -40	
		degrees Centigrade.	
REV J	6/21/2021	Updated Package Ball assignment to conform to JEDED standard	
REV K	8/23/2021	Updated Page mode timing : Tpwc in table 15.	
		Corrected Isb in summary table	
		Added Pin descriptions for E# and PG#.	
		Updated timing diagrams (Figures 15, 16 & 17) to show E# instead of CE#;	
		W# instead of WE# and G# instead of OE#.	
DEVI	0/0/0004	Removed Byte enable from Table 14	
REV L	9/3/2021	Updated package dimension to show Ball diameter	
		Removed redundant notes describing dimensions on package dimension	
		page.	
REV M	9/29/2021	Fixed I/O Power legend to show VCCQ Removed 512Mb and 2Gb densities	
KEV IVI	9/29/2021	Removed 5 12 Mb and 2Gb densities Removed Tape & Reel as an ordering option	
		Added Vccio to the specification	
REV N	10/20/2021	Added 64 and 256Mb densities	
NEV IN	10/20/2021	Added Hardware RST# pin	
		Temp spec in Part number corrected to show 0M	
REV O	12/09/2021	Added V_{DD} and V_{BYP} pin description and PowerUp/Powerdown sequence	
INLV U	12/03/2021	Taged ADD and ARAS bill describing and Lowerob Lowerdown seddence	

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

	I		
REV S	12/20/2021	Updated Table 5 with Vcc Ramp time	
REV T	01/18/2022	Removed 64 and 256Mb densities from this data sheet	
REV U	03/31/2022	Renamed VCCQ to VCCIO	
		Added pin assignment table	
		Relaxed Vdd spec to +-7.5% from +-5%	
U.1	04/29/2022	Added ball assignment of ADDR[17:12] to signal description table	
		Added package thermal	
U.2	05/16/2022	Updated Pictures with new Figure #	
		Updated DC Characteristics Table: Current numbers are based on UMC's	
		analysis of their current 22nm process.	
		Added V _{DD} to supply line on Front page	
U.3	05/23/2022	Updated Power sequencing description under DEVICE INITIALIZATION	
		Added Absolute Maximum Ratings Table	
		Called out specific voltages are allowed for V _{CCIO} on front page.	
U.4	05/25/2022	Removed Power sequencing case of VDD going low before VCC	
		Added Absolute Maximum rating on V _{DD}	
REV V	07/01/2022	Changed the nominal height to be compatible with Gen 3 Serial devices:	
		Nominal Thickness in Figure 4 changed from 1.39mm to 1.43mm.	
		Leaded ball options added to Order Option Table	
REV W	07/19/2022	Removed Performance table	
		Added Extended Safe Operating Area as well as Normal Operating Conditions	
		Removed redundant Package drawing table Fixed wording on use of V _{BYP} in pin definition table	
REV X	12/15/2022	Ball K3 (previously designated as #PG) is re-assigned as Reserved and	
KEVA	12/13/2022	must be pulled high to Vccio through a $10k\Omega$ resistor (This is the fast page	
		function. For compatibility with SRAM devices, this function is now	
		reserved and only available for custom designs).	
		This device is now available for use in LEO. The Extended Safe Operating	
		Area (ESOA) is no longer described here and is only available through our	
		partner program: As such Ball K12 (previously external Vdd) is now NC	
		and H13 (previously V _{BYP}) has to be connected to Vss.	
		Added 85°C power consumption to DC Characteristics Table 8.	
X.1	03/28/2023	Nominal Thikcness in Figure 4 changed from 1.43mm to 1.51mm.	
X.2	04/10/2023	Added 4.7KΩ pull up to INT#	
7112	0 17 1072020	Added Asynchronous Page Mode Read & Write: This functionality has	
		always been in the silicon. It is now fully tested and verified effective with	
		date code: 2250 for 1Gb devices and 2240 for 4Gb devices.	
X.3	05/01/2023	Voltage Ramp Up rate has been clarified in the Normal Device	
		Initialization.	
		Input & Output Low & High Voltage levels have been redefined as	
		references to V _{CCIO} rather than V _{CC} in the DC Characteristics Table 8.	
X.4	05/08/2023	Page Mode write Timing was updated to match the read timing. Lead cycle	
		is the same 45ns for Read and Write.	
		Specified Max temp to be junction rather than ambiet	
X.5	07/20/2023	K12 was mislabelled in Figure 3 as "NC". It is "DNU" Corrected the picture.	
X.6	08/31/2023	Added 2Gb density	
		Updated Input & Output Low and High Voltage levels DC Charaterstics	
		table 8 to be consistent at 1.8V operation	
		Clarification that PEMS-INST-001 flow version of product will be supplied	
		through a partner	
		Table 3: Signal desciption: Corrected definition of W# and removed RFU.	
		Table 11: Corrected signal name: Changed V _{DD} to V _{CC}	
		Guideline on normal device initialization corrected to say: pullup on E# is to	
		Vccio	
X.7	10/17/2023	Fixed Typo in Signal pin description Table 3 DQ[31:0]	

1 Gb x32, 2 Gb x32, 4Gb x32, 8Gb x32: MRAM Memory

		Added Special Configuration Registers
		Added 8Gb density
		Updated Maximum rating table 11
	12/13/2023	Updated Solder ball and Solder resist opening dimensions on the Package drawing
	01/04/2024	Updated Table 16 Page Mode AC Timing signal name/descriptions
	01/04/2024	Package naming convention: Ball assignement pictures used to say:
		Top View. The label should have read: Bottom View
	01/18/2024	Added Mechanical drawing for 8Gb
X.8	03/26/2024	Corrected Modes Of Operation Table "Removed Output Disabled mode with E#, G#, W# set to L, X, X".
		Removed DC output Current lout from Absolute Maximum Ratings Table:
		Correct Maximum Current should be taken from the DC Charcterstics table
		base don number of dies in the device.
		INT# definition was updated: When triggered this signal remains low and
		must be cleared by writing to the ECC Control register.
REV Y	03/28/2024	Added Safe Operating Area Specification: Extended the Operational
	04/05/2024	voltage to 2.5V as a minimum.
		Added Marking Specification.
	04/09/2024	Corrected 8Gb Ball Map to be consistent with the 1/2/4Gb Ball Map.
	05/20/2024	Corrcted the address line that needs to be gounded for 2Gb device A[26].
REV Z	06/24/2024	Added Radiation Tolerance level to the datasheet. Please refer to te
		Radiation test report for this family to decide suitability for your mission.
	07/15/2024	Updated Power UP Behavior to allow for Vcc and Vccio mismatch.
Z.1	07/22/2024	Added tAAP Page mode Timing for 8Gb density.
		Changed number of Burn in hours from 240 hours to 168 hours to be
Z.2	12/19/2024	consistent with Industry standard for infant mortality rate